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This document contains a formal game-theoretic presentation of the arguments in Is This

Paper Dangerous? The majority of the proofs are by construction: we explicate the algo-

rithm by which the unique equilibrium can be found, in most cases via backward induction.

Accordingly, rather than list propositions before proofs, we list them after. In many cases

our propositions reference the algorithms that precede them. Throughout the analysis we

maintain the following assumptions:

• Number of potential target sites: N .

• Payoff to G if target i is struck successfully: −Li.

• Payoff to T if target i is struck successfully: Ai.

• Resources allocated to site i: ri with
∑

ri ≤ R.

• Information released about site i: si ∈ [0, 1].

• General information released: x ∈ [0, 1].

• Probability that an attack on site i will succeed: δi(ri, si, x), where −δi(ri, si, x) is

supermodular.1

1Note that we assume the cross-partial derivative for each pair of variables in −δi is strictly positive.
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• Externality that obtains only if site i is attacked (whether successfully or not): gi(si, x).

If positive, gi(si, x) is increasing in each variable and displays increasing differences. If

negative, it is decreasing in each variable and its negative displays increasing differences.

gi(0, 0) = 0. We assume that Li > gi(si, x)∀i, si, x as otherwise G would want T to

attack site i.

• Site-specific externality that obtains whether or not site i is attacked: hi(si), which is

positive and increasing in si. hi(0) = 0.

• Externality that always obtains: h(x), which is positive and increasing in x. h(0) = 0.

• Probability that T knows of site i: P T
i (x, si), which is increasing in each variable and

displays increasing returns.

• Probability that G knows of site i: P G
i (x), which is increasing in x.

1 General Information—Propositions 1 and 2

To analyze the role of general information we start by considering the simple setting in which

both G and T are searching for vulnerable targets. At the start of each game (period 0), G

decides on an information sharing policy x ∈ [0, 1]. Each period, T either pays cost C and

randomly samples kT (x) targets from a finite set of N targets, or attacks one of the targets it

has already seen and receives the appropriate payoff. If T searches for new targets, G likewise

samples kG(x) targets from the the same set. Both kT (x) and kG(x) are increasing, concave

functions of x. There are two types of targets: high-valued ones that yield L1 and low-valued

ones that yield L2 < L1. There are H ≤ N high-valued targets to be found and this number

is common knowledge.2 We assume that the chance of finding a target is independent of

2Rather than specify only two levels of attack utility, we can instead think of H as being the number

of targets that meet the terrorists’ aspiration level for political impact. So long as this number is common

knowledge, the analysis remains the same.
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its type.3 If a target is unknown to G, then G cannot defend it so δi(x, unknown) = 1

and T receives the above payoffs from striking it. If a target is known to G, then G can

defend it perfectly so δi(x, known) = 0, and T receives a payoff of zero for striking it. The

probability of a target’s being seen is uniform across targets, and so independent of its type.

No externalities are present. Proposition 1 covers the case where T must decide how many

periods to search at the beginning of the game. Proposition 2 covers the case where T can

decide to attack or keep searching in every period.

We consider the simpler variant first. T’s strategy here is a stopping time that maximizes

its expected utility looking forward from the beginning of the game. This is a function of two

things: the chance that G has not identified the target T will strike, and the payoff that T

would receive if an attack were to succeed. As G’s search procedure is independent of target

type, the probability at any t that G has not seen the target T strikes is just (1−kG(x)t/N).

Now consider what T can expect to receive upon attacking. Since T will always choose to

attack a high-value (good) target over a low-value (bad) one, we need to know the probability

of drawing at least one good target by period t. This is equal to one minus the probability

of drawing no good targets in t periods (the periods from 0 to t − 1), encompassing kT (x)t

draws, which is 1 −
∏kT (x)t−1

j=0 (1 − H
N−j

) = 1 −
∏kT (x)t−1

j=0 (N−H−j

N−j
) = 1 −

(N−H)(kT (x)t)

N(kT (x)t)
, where

a(n) = a(a − 1) . . . (a − n + 1).4 The expected utility for T if it attacks in period t is thus:

(

1 −
kG(x)t

N

) [

L1 −

(

(N − H)(kT (x)t)

N(kT (x)t)

)

(L1 − L2)

]

− Ct. (1)

The optimal stopping time is the time t∗(x) that maximizes (1).5 Denote this time t∗(x).

3Relaxing this assumption, say by making the probability of being seen higher (lower) for low-valued

targets, has a similar effect on the players’ strategies as decreasing (increasing) H and so is not treated

separately.
4This is known as a falling factorial.
5Whether or not a non-zero stopping time exists depends on the values of the parameters. Though one

can differentiate (2), given its complexity and the fact that stopping times are discrete it is far easier to

maximize (2) numerically via a simple line search. This is the method by which we compute the optimal

stopping times in the text.
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Changing the amount of information released alters three things: T’s stopping point, and

the rates of target discovery by both G and T. G’s decision on x minimizes

(

1 −
kG(x)t∗(x)

N

) [

L1 −

(

(N − H)(kT (x)t∗(x))

N(kT (x)t∗(x))

)

(L1 − L2)

]

, (2)

which is just (1) with C = 0 and with t∗(x) inserted for t.

Increasing kG is strictly better for G and increasing kT is strictly worse, so increasing

the rate at which G finds targets relative to T’s rate increases the range of parameter values

over which it is beneficial to release information. (Though we do not explore this here, the

same is true for the addition of a positive externality like h(x), as it does not change T’s

stopping rule.) These results are summarized in the following proposition.

Proposition 1: Under a simple stopping rule, T chooses a stopping time and G chooses a

level of information released according to the algorithm given above. The range of parameter

values over which information is released increases as G becomes relatively more efficient at

discerning targets than T is. If the optimal stopping time can be made less than one then

T never searches at all, which is the best outcome for G.

Next we consider the more complex variant, in which T can decide to attack or to continue

searching in every period. T’s equilibrium strategy is a rule that dictates when it chooses

to attack and which target it attacks for every configuration of known targets at every time.

Consider first T’s choice as to what target to attack. T knows that no payoff ever exceeds

L1, and that G has an equal—and increasing—chance of discovering any particular target

during its search. Thus, as soon as it observes a good target it should stop searching, since

it can do no better by waiting.

This is half of T’s search strategy: attack a good target if seen. The other half is a rule

for what to do when no high-value target has been identified. The rule simply compares

the present value of attacking a worse target with the expected value of the game looking

forward. Attacking a worse target at time t yields (1 − kG(x)t/N)L2. Because the game is

of finite length—all the targets must eventually be found by G (at which point there is no
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benefit to T’s searching)—T can use backward induction to find the expected value of the

game.

G will have found all of the targets by period tLast + 1 = Ceiling(N/kG),6 so we know

that in period tLast it always pays for T to attack if it has not yet found a high-valued target.

Whether T searches in period tLast−1 depends on the probability that T finds a good target

in the next kT (x) draws. Since search is always conditioned on not having observed a good

target yet, we can write this probability at time t as

Pgood(t) ≡ 1 −

kT (x)−1
∏

j=0

(1 −
H

N − kT (x)t − j
) = 1 −

(N − H − kT (x)t)(kT (x))

(N − kT (x)t)(kT (x))

,

where the product is the probability the kT (x) additional draws yield only bad targets.

Thus T’s payoff if it searches in time tLast − 1 is (1 − kG(x)tLast/N)(L1Pgood(tLast − 1) +

L2(1−Pgood(tLast−1)))−C which is compared to the payoff for not searching in time tLast−1

contingent on not having seen a good target yet, (1−kG(x)(tLast −1)/N)L2. If the former is

greater T searches in period tLast −1, if the latter, T does not. For completeness, we assume

that T attacks if indifferent.

T’s algorithm thus is as follows. First T decides whether it would attack or search

in period tLast − 1 according to the rule in the previous paragraph. The expected payoff

from this decision—call this QtLast−1—becomes the relevant payoff for observing no good

targets in period tLast − 2. The relevant comparison in period tLast − 2 is therefore whether

Pgood(tLast − 2)L1(1− kG(x)(tLast − 1)/N) + (1−Pgood(tLast − 2))QtLast−1 −C is greater than

(1 − kG(x)(tLast − 2)/N)L2. If it is, T searches in period tLast − 2, otherwise T attacks a

lesser target. Generalizing to Qt allows us to continue this train of logic as we work up the

game tree. In every period, T compares the same two terms (shifted up a period) and decides

whether to attack or to search. We call the earliest period in which T would choose to attack

rather than to continue searching t∗(x). Thus, T’s stopping rule is to attack whenever a good

6The ceiling function equals the next highest integer if its argument is not an integer, or the argument

itself otherwise.
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target is seen, or in period t∗(x) if no good target is seen before then.

Since G must decide on an information release strategy before the search game takes

place, G maximizes an expected utility that consists of the sum of all potential losses from

good targets in the first t∗(x)− 1 periods and the potential loss from both targets in period

t∗(x). Each period’s potential loss is weighted by the probability of stopping at that period,

which is just the probability of no good targets being observed by T in the t − 1 periods

before that multiplied by Pgood(t − 1). So x minimizes G’s loss:

Pgood(0)

„

1 −

kG(x)

N

«

L1 +

t∗(x)−1
X

t=2

2

4

(N − H)(kT (x)(t−1))

N(kT (x)(t−1))

Pgood(t − 1)

„

1 −

kG(x)t

N

«

L1

3

5

+
(N − H)(kT (x)(t∗(x)−1))

N(kT (x)(t∗(x)−1))

" 

1 −

kG(x)t∗(x)

N

!

`

Pgood(t
∗

(x) − 1)L1 + (1 − Pgood(t
∗

(x) − 1))L2
´

#

. (3)

As with the simpler stopping rule, for some parameter values the optimal amount of

information released by G will be positive. Again, increasing kG is strictly better for G and

increasing kT is strictly worse, so increasing the rate at which G finds targets relative to T’s

rate increases the range of parameter values over which it is beneficial to release information.

Further, there will still be situations in which G can deter T from searching by releasing

sufficient information. We summarize these results in the following proposition.

Proposition 2: Under a complex stopping rule, T attacks upon seeing any good target

or upon reaching period t∗(x), whichever comes first. G chooses the level of information

that minimizes (3). The range of parameters over which information is released increases as

G becomes relatively more efficient at discerning targets than T. If t∗(x) is non-positive, T

never searches at all, which is the optimal outcome for G.

2 Target-Specific Information—Lemmas 1 and 2

We begin our analysis with a simple model where resources are held constant and G can

release varying levels of target-specific information. Consider first the case where both T
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and G know all of the targets and si ∈ {0, 1}. G’s utility is then (−Li + gi(si))δi(si)+hi(si).

Define Zi(si) ≡ (−L1 + gi(si))δi(si) + hi(si). Assume that the sites are ordered such that

(−L1)δ1(0) < (−L2)δ2(0) < . . . < (−LN )δN(0). Thus T strictly prefers to attack site 1, then

site 2, and so on. The assumptions on the functions g and h imply that this same ordering

holds for G at si = 0: Z1(0) < Z2(0) < . . . < ZN(0).

Begin with site N. The decision as to whether or not to allocate information boils down to

a comparison between (−LN +gN(1))δN(1)+hN(1) and (−LN )δN(0). If the former is greater

G releases information; if the latter is greater, G does not. Define the greater of these two QN

and consider site N − 1. There are two possibilities here. One, setting sN−1 = 1 might not

change T’s ordering on the targets. In this case, the decision at this site is self-contained, and

is again a comparison between (−LN−1 + gN−1(1))δN−1(1) + hN−1(1) and (−LN−1)δN−1(0).

Two, setting sN−1 = 1 might change T’s ordering. Since δi is decreasing in si, the only

ordering change possible is for site N − 1 to flip with site N . Allocating information to

site N − 1 then causes T to target site N , yielding a payoff of QN to G. This is always

beneficial for G, as QN ≥ (−LN )δN(0) > (−LN−1)δN−1(0), so whenever T’s ordering would

shift as a result, it is beneficial for G to release information. This logic can be continued

up the chain of sites, and at each site it is either always beneficial to release information, if

T’s ordering would change, or beneficial whenever (−Li + gi(1))δi(1) + hi(1) > (−Li)δi(0).

Rearranged, this yields gi(1) + hi(1)
δi(1)

> −Li
δi(0)−δi(1)

δi(1)
, which provides a sufficient condition on

the magnitude of externalities for the release of information for T’s preferred target (which

will be site 1 unless the ordering has changed upon the release of information).7 For all other

targets—those which T will not attack in equilibrium—the condition is simpler: G should

release information whenever hi(1) > 0, as the other factors in the above inequality hold

only when a target is attacked.

Lemma 1: If resources are fixed, all players know the existence of all targets, and

7Note that this is not a necessary condition: there will be some circumstances—those in which T’s

ordering changes—where it will be beneficial to release information even when the condition does not hold.
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si ∈ {0, 1}, then G releases information about site i whenever gi(1) + hi(1)
δi(1)

> −Li
δi(0)−δi(1)

δi(1)
if

site i will be attacked by T in equilibrium, or whenever hi(1) > 0 otherwise.

We now assume that G does not know what T knows. We also eliminate the externality

hi for simplicity, as we want to focus on the role of P T
i (si).

8 G’s expected utility from an

attack on site i is now (−Li + gi(si))δi(si) ≡ Zi(si). Again assume the same ordering over

sites for T: (−L1)δ1(0) < (−L2)δ2(0) < . . . < (−LN )δN(0), and again start with site N . As

releasing information about N cannot change T’s ordering, G releases information if ZN(1) >

P T
N (0)ZN(0). Since the Z’s are all negative, this condition is the same as P T

N (0) > ZN (1)
ZN (0)

,

putting a lower bound on the prior probability that site N could be attacked.

Now denote the greater (less negative) of (ZN(1), P T
N(0)ZN(0)) P Q

N QN and consider site

N − 1. As in Lemma 1, we have two possibilities: allocating information to this site changes

T’s ordering, or it does not. If it does not, then releasing information ensures that target

N − 1 is always struck (assuming attack modes for the previous N − 2 sites are not known

by T), since T then knows perfectly how to attack it. G allocates information whenever:

(a) ZN−1(1) > P T
N−1(0)ZN−1(0) + (1 − P T

N−1(0))P Q
N QN . If it does change T’s ordering then

it is possible that site N is attacked; in this case G releases information whenever: (b)

P Q
N QN +(1−P Q

N )ZN−1(1) > P T
N−1(0)ZN−1(0)+(1−P T

N−1(0))P Q
N QN . As ZN−1(0) < P Q

N QN by

the assumption on the ordering, condition (a) reduces to P T
N (0) >

ZN−1(1)−P
Q
N

QN

ZN−1(0)−P
Q
N

QN

. Similarly,

condition (b) reduces to P T
N (0) >

(1−P
Q
N

)ZN−1(1)

ZN−1(0)−P
Q
N

QN

. In each case, information is released when

the prior probability exceeds a certain threshold. This procedure can be continued up the

chain of sites, yielding a lower bound on the prior probability for each site. This leads to

Lemma 2.

Lemma 2: If resources are fixed and si ∈ {0, 1}, then G releases information about site

i whenever the prior probability P T
i (0) is sufficiently high.

8This is the worst case for information sharing, if these externalities are positive.
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3 Resource Allocation—Propositions 3a and 3b

Because it will help explain the interaction between information release and resource alloca-

tion, we must first examine the case where G solely allocates resources and all targets are

known.9 Assume without loss of generality that sites are indexed so that L1δ1(0) > L2δ2(0) >

· · · > LNδN(0) and that Az1δz1(0) > Az2δz2(0) > · · · > AzN
δzN

(0), where zi ∈ 1, . . . , N . We

solve the game using backward induction.

Consider first the zero-sum case, so Li=Ai. T picks the optimal target to attack, which

given the assumed ordering is target 1. Knowing this will happen, G minimizes its expected

loss by putting resources into target 1, which is strictly optimal until such time as T becomes

indifferent between attacking targets 1 and 2. This occurs after putting ra resources into

defending site 1, with L1δ1(ra) = L2δ2(0). At this point G must defend both targets 1 and

2 and thus splits resources so as to keep T indifferent between attacking either of these two

targets. Again, this continues until T is now indifferent between attacking sites 1, 2, or 3,

at which point G must begin defending target 3 as well. This logic continues as new sites

become desirable targets for T, until such time as G runs out of resources and the chain ends.

The number of sites—iR—to which G makes T indifferent is determined by the resource total

R, the Li, and the functions δi(ri). As it is indifferent between these sites, we assume that

T attacks one at random in equilibrium. Thus we have:

Proposition 3a: Assume Li = Ai for all i. In equilibrium, government utilizes all

resources so as to make the terrorists indifferent between attacking the first iR sites, where

iR depends on R, the Li, and the functions δi(ri). Terrorists choose one of these first iR sites

to attack at random.

Now consider the case where G and T may value targets differently. We assume a minimal

resource level in this case, so that, ∀i, ri ≥ rmin > 0.10 rmin can be arbitrarily small, but

must be strictly greater than zero. Here T’s ordering over targets is what matters, which

9As noted in the text, Proposition 3a essentially restates the analysis in Powell (2007a).
10For federal resources in the United States this amount is a dollar, the smallest denomination that appears
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leads to a complication: making T indifferent between two targets might introduce into the

indifference set a target that yields a strictly worse expected outcome for G than the other

targets in the set did.11 To avoid this, G adds additional rmin resources to this new, more

valued target, which removes it from T’s indifference set, causing T not to attack that target

in equilibrium.12 Further resource additions to this and other targets are made so as to

maintain this relationship—any targets that G values more than T’s ordering are kept out

of T’s indifference set. Other than this complication, the game is the same. As the extra

resources added to the more costly targets are small, G does weakly better when the game

is not zero-sum, since T is now choosing among targets that matter weakly less to G.13 So:

Proposition 3b: In equilibrium, government utilizes all resources so as to make the

terrorists indifferent between attacking a subset of the first iR sites, where this subset depends

on R, the Li and Ai, and the functions δi. Terrorists choose one of this subset to attack at

random, and G does weakly better in terms of expected utility than in the zero-sum case.

4 Interaction of Information and Resources—Proposition

4

We now turn to the case where G can both release target-specific information and allocate

resources. Since a zero-sum game represents the worst-case scenario for G, as discussed at

the end of the last section, we will also henceforth assume that Li = Ai for all i; if it pays to

in spending bills.
11The existence of a minimum resource unit renders the procedure of allocating to achieve indifference

somewhat problematic. We assume that if for some cases the discreteness of resources renders indifference

impossible to achieve G makes T indifferent between the sites that produce the least loss for G.
12A greater amount of resources can be added if G does not believe that T is quite this rational.
13Note that having a minimal resource unit rmin is necessary for the result. If resources were continuous

the equilibrium from Powell (2007a) would result in which G allocates resources to minimize T’s maximum

gain and T attacks the target from his indifferent set that does the least damage to G.
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release information in the zero-sum case, it pays in the case of differing valuations as well. A

strategy for G is an N × 2-tuple that describes a resource allocation, ri, and an information

policy, si, for each target i, with si ∈ [0, 1] and
∑

ri ≤ R. As discussed in the text, we

are considering the zero-sum case for this and subsequent propositions, so that Li = Ai ∀ i.

Further, henceforth we will be considering only the case of a negative backlash if a site is

struck, so that gi(si) ≤ 0 ∀ i, si. Though we do this for simplicity, this assumption will make

it more difficult to show that information will be released in equilibrium, as per Lemmas 1

and 2, and so we are again treating the worst-case scenario for openness.

We begin with a lemma that will be useful throughout the analysis of Proposition 4.

Lemma 3: G’s expected utility at each site displays increasing differences in ri, si.

Proof: To see this, let Fi(si) ≡ P T
i (si)(−Li + gi(si)); then

∂2

∂ri∂si

[

P T
i (si)(−Li + gi(si))δi(ri, si) + hi(si)

]

=
∂Fi(si)

∂si

∂δi(ri, si)

∂ri

+ Fi(si)
∂2δi(ri, si)

∂ri∂si

.

Note that ∂Fi(si)
∂si

= (−Li+gi(si))P
T ′

i (si)+gi(si)
′P T

i (si) < 0, δ(ri, si) and Fi(si) are decreasing

in ri and si respectively, Fi ≤ 0, and −δi(ri, si) displays increasing differences. Therefore

each of the two terms on the right hand side is positive, proving the lemma.

G does not know which targets T knows, so constructing an equilibrium is more compli-

cated than in Propositions 3a and 3b. We begin by writing G’s utility unconditional on T’s

actions, which is UG(r, s) =
∑

hi(si)+1iZi(si, ri), where 1i is an indicator function that takes

the value 1 when T attacks target 1 and 0 otherwise, and Zi(si, ri) ≡ (−Li + gi(si))δi(ri, si).

As T attacks the site that yields it the highest value in expectation, G must maximize its

expected utility conditional on T’s choice of where to attack. Assuming that sites are ordered

such that L1δ1(s
∗

1(0), 0) > L2δ2(s
∗

2(0), 0) > . . . > LNδN(s∗N(0), 0), where s∗i (0) is the optimal

level of information released at resource level 0, this expected utility is:

11



E[UG(r, s)|T ] =
∑

i

hi(si) + (P1(s1))Z1(s1, r1) + (1 − P1(s1))P2(s2)Z2(s2, r2) + . . .

+
N−1
∏

i=1

(1 − Pi(si))PN(sN)ZN(sN , rN). (4)

We will denote this EUG. By Lemma 3, Zi(ri, si) has increasing differences for all i.

Accordingly, since only Zi(ri, si) depends on ri, EUG has increasing differences in the pair

(ri, si) ∀ i. The equilibrium N×2-tuple can be found by maximizing (4) under the constraint

∑

ri ≤ R. As the maximization is over a compact subset of ℜ2N−1, an equilibrium exists as

long as EUG is bounded and continuous in a region of strictly positive measure surrounding

the maximum of the function.

This latter condition creates complexity. Because T’s ordering over sites can change as

G increases information and resources at a site, G’s expected utility function may not be

continuous over the entire domain. To show this, consider a typical algorithm for solving

this maximization problem that is very similar to the proof of Proposition 4a. First, G adds

resources to site 1, which increases G’s utility (by assumption) and also weakly increases the

optimal level of information released at site 1 (due to increasing differences). Increasing s1

has two distinct effects: (1) it decreases G’s expected loss at site 1, even taking into account

the increase in the chance that T knows of site 1; and (2) it decreases the likelihood that

T attacks any other site. The net result is that it becomes even more beneficial for G to

invest in site 1’s defense. However, at some point this increased investment may cause T’s

ordering to switch so that now site 2 is preferred to site 1. As T can only target one site,

G’s conditional expected utility changes form: all 1 and 2 subscripts switch places. This can

cause EUG to be discontinuous at the point of the switch.

However, an equilibrium still exists. For each ordering over targets for T, G’s expected

utility function is bounded and continuous on a closed and bounded domain. Thus, for every

ordering there exists a maximum. As the number of possible orderings is finite (N !) and

every allocation of si and ri results in one of these orderings, the maximal expected utilities
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for each of these orderings can themselves be ordered. There must exist a maximum of this

ordered list of utilities (though there can be more than one), and the allocation that results

in this maximum will be the equilibrium of the game.

This shows that there is an equilibrium for any set of functions gi(·), hi(·), P T
i (·), and

δi(·, ·) and any R. To prove the second part of the proposition, note that since EUG has

increasing differences, increasing the resources at a site must weakly increase the equilibrium

level of information released at that site, implying that the sum of all information released,

∑

si is weakly increasing in R, as all available resources get assigned to a site in equilibrium.

Proposition 4: Assume Li = Ai for all i. For any set of functions gi(·), hi(·), P T
i (·),

and δi(·, ·) and any R there exists an equilibrium of the game in which G allocates resources

and releases target-specific information across known sites and T attacks the site it knows

that provides it the highest expected utility. The sum total of all information released,
∑

si,

is weakly increasing in the total amount of resources available, R.

5 General and Target-Specific Information—Proposition

5

The final model we treat in the paper uses all of the assumptions listed at the beginning

of this document. Government begins the game by releasing a level of general information,

x ∈ [0, 1]. This information influences the number of targets that G discovers, and we denote

the set of realized targets Yj. The set of all Yj, which we will call Y , is the set of all possible

arrangements of known and unknown targets. As x determines P G
i (x) for all targets i, x

also determines the probability that any set of targets Yj is realized.14 For example, the

probability of realizing the set in which the first three targets are known by G and the last

14Note that we have abstracted away from the two search games discussed previously. The game we

present here is equivalent to one in which first both players search, then G allocates resources and releases

target-specific information, and finally T attacks.
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N − 3 are not is P G
1 (x)P G

2 (x)P G
3 (x)(1 − P G

4 (x)) . . . (1 − P G
N (x)). We denote each of these

probabilities by P G,Y
j (x).

Once G realizes a set of targets Yj , the game follows exactly the form discussed prior to

Proposition 4, but several functions now depend on x. For any given Yj, therefore, there

exist equilibrium strategies for G and T, given by Proposition 4, that fully specify s∗i (x) and

r∗i (x). Denote the expected utility to G from this equilibrium UG,Y
j (x), which is equal to the

equilibrium utility from Proposition 4 (for a given value of x) plus the global externality h(x).

The equilibrium of this full game thus can be solved via backward induction: Proposition 4

dictates the outcome of the game once G has chosen x∗. To specify G’s full strategy we must

determine the optimal amount of general information to release. The optimal x∗ is given by:

argmaxx

∑

Yj∈Y

P G,Y
j (x)UG,Y

j (x). (5)

The maximum is taken over a compact set, so we just need continuity near the optimum

to prove an equilibrium. For any Yj, P G,Y
j (x) is continuous in x and the sum adds no

discontinuity. Thus we need only show that UG,Y
j (x) is continuous near the optimum x∗.

The same logic as in the proof of Proposition 4 applies here as well: equation (4) above

(with the functional dependence on x added) is continuous except for the points at which

T’s ordering over targets changes. Each x induces a distribution over Yj, each element of

which has an optimal s∗i (x) and r∗i (x) and so a specific associated ordering. Each ordering

has a maximum, and each x gets mapped to one of these orderings. As there are a finite

set of orderings, we can choose a global maximum from this set of local maxima, and so

the game has an equilibrium. Further, the equilibrium level of general information is weakly

increasing in the total amount of resources available, R, due to supermodularity. This gives

us our final result:

Proposition 5: In the full game, G follows the algorithm given above and T attacks the

target seen that yields the greatest expected utility. The amount of information released by

14



G in equilibrium is weakly increasing in the total amount of resources, R.
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